Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Cells ; 12(1)2022 12 20.
Article in English | MEDLINE | ID: covidwho-2243524

ABSTRACT

The SARS-CoV-2 infection was previously associated with the expression of the dopamine biosynthetic enzyme L-Dopa decarboxylase (DDC). Specifically, a negative correlation was detected between DDC mRNA and SARS-CoV-2 RNA levels in in vitro infected epithelial cells and the nasopharyngeal tissue of COVID-19 patients with mild/no symptoms. However, DDC, among other genes related to both DDC expression and SARS-CoV-2-infection (ACE2, dACE2, EPO), was upregulated in these patients, possibly attributed to an orchestrated host antiviral response. Herein, by comparing DDC expression in the nasopharyngeal swab samples of severe/critical to mild COVID-19 cases, we showed a 20 mean-fold reduction, highlighting the importance of the expression of this gene as a potential marker of COVID-19 severity. Moreover, we identified an association of SARS-CoV-2 infection with the expression of key catecholamine biosynthesis/metabolism-related genes, in whole blood samples from hospitalized patients and in cultured cells. Specifically, viral infection downregulated the biosynthetic part of the dopamine pathway (reduction in DDC expression up to 7.5 mean-fold), while enhanced the catabolizing part (increase in monoamine oxidases A and B expression up to 15 and 10 mean-fold, respectively) in vivo, irrespectively of the presence of comorbidities. In accordance, dopamine levels in the sera of severe cases were reduced (up to 3.8 mean-fold). Additionally, a moderate positive correlation between DDC and MAOA mRNA levels (r = 0.527, p < 00001) in the blood was identified upon SARS-CoV-2-infection. These observations were consistent to the gene expression data from SARS-CoV-2-infected Vero E6 and A549 epithelial cells. Furthermore, L-Dopa or dopamine treatment of infected cells attenuated the virus-derived cytopathic effect by 55% and 59%, respectively. The SARS-CoV-2 mediated suppression of dopamine biosynthesis in cell culture was, at least in part, attributed to hypoxia-like conditions triggered by viral infection. These findings suggest that L-Dopa/dopamine intake may have a preventive or therapeutic value for COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Catecholamines , Dopamine , Levodopa/metabolism , RNA, Viral/metabolism , Biosynthetic Pathways , RNA, Messenger/metabolism
2.
Microorganisms ; 10(7)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938908

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins' structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.

3.
Viruses ; 14(4)2022 04 05.
Article in English | MEDLINE | ID: covidwho-1776360

ABSTRACT

In-depth understanding of the immune response provoked by SARS-CoV-2 infection is necessary, as there is a great risk of reinfection and a difficulty in achieving herd immunity due to a decline in both antibody concentration and avidity. Avidity testing, however, could overcome variability in the immune response associated with sex or clinical symptoms, and thus differentiate between recent and past infections. In this context, here, we analyzed SARS-CoV-2 antibody kinetics and avidity in Greek hospitalized (26%) and non-hospitalized (74%) COVID-19 patients (N = 71) in the course of up to 15 months after their infection to improve the accuracy of the serological diagnosis in dating the onset of the infection. The results showed that IgG-S1 levels decline significantly at four months (p = 0.0239) in both groups of patients and are higher in hospitalized ones (up to 2.1-fold, p < 0.001). Additionally, hospitalized patients' titers drop greatly and are equalized to non-hospitalized ones only at a time-point of twelve to fifteen months. Antibody levels of women in total remain more stable months after infection, compared to men. Furthermore, we examined the differential maturation of IgG avidity after SARS-CoV-2 infection, showing an incomplete maturation of avidity that results in a plateau at four months after infection. We also defined 38.2% avidity (sensitivity: 58.9%, specificity: 90.91%) as an appropriate "cut-off" that could be used to determine the stage of infection before avidity reaches a plateau.


Subject(s)
COVID-19 , Antibodies, Viral , Antibody Formation , COVID-19/diagnosis , Female , Greece , Humans , Immunoglobulin G , Kinetics , Male , SARS-CoV-2
4.
Microorganisms ; 9(8)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1355012

ABSTRACT

Anti-SARS-CoV-2 spike RBD (receptor-binding domain) IgG antibody levels were monitored in 1643 volunteer healthcare workers of Eginition, Evangelismos, and Konstantopoulio General Hospitals (Athens, Greece), who underwent vaccination with two doses of COVID-19 BNT162b2 mRNA vaccine (Pfizer) and had no history of SARS-CoV-2 infection. Venous blood was collected 20-30 days after the second vaccine dose and anti-RBD IgG levels were determined using CMIA SARS-CoV-2 IgG II Quant (Abbott) on ARCHITECT i System or ADVIA Centaur SARS-CoV-2 IgG (Siemens) on Centaur XP platform. From the total population of 1643 vaccinees (533 M/1110 F; median age = 49; interquartile range-IQR = 40-56), 1636 (99.6%) had anti-SARS-CoV-2 IgG titers above the positivity threshold of the assay used. One-Way ANOVA Kruskal-Wallis H test showed a statistically significant difference in the median of antibody titers between the different age groups (p < 0.0001). Consistently, Spearman's correlation coefficient (r) for IgGs and age as continuous variables was -0.2380 (p = 1.98 × 10-17). Moreover, antibody titers were slightly higher by 1.2-mean fold (p = 3 × 10-6) in the total female population of the three hospitals (median = 1594; IQR = 875-2584) as compared to males (median = 1292; IQR = 671.9-2188). The present study supports that BNT162b2 vaccine is particularly effective in producing high anti-SARS-CoV-2 IgG levels in healthy individuals, and this humoral response is age- and gender-dependent.

SELECTION OF CITATIONS
SEARCH DETAIL